

Test Report

Test Report No.: HL/MT/220602003

Issued To: BLUEGRESS PORSELANO LLP

Plot No. 8, Shayona Estate Part-2, Bh. Silver Oak Engineering College, Nr. AUDA Water Tank, Gota, Ahmedabad-382481 Gujarat, INDIA. Email : hexiqonlab@gmail.com Mb.: +91 8487878021, +91 9825577370 Tel.: 079-29600229

ULR No.: TC90222200000868F

Issue Date: 20-06-2022

TEST REPORT OF TILE

Name of Agency	:	BLUEGRESS PORSELANO LLP	
Address	:	SURVEY NUMBER-547 , AT- SHAPAR , NEAR KAJARIY	A SANITARY,
		JETPAR ROAD , MORBI , GUJARAT , 363630,INDIA	
Sample Name	:	Pressed Ceramic Tiles (Glazed Vitrified Tiles)	
Make	:	BLUEGRESS PORSELANO	
Sample Code	:	Not Mentioned	
Sample Received on	:	02-06-2022	
Analysis End On	:	20-06-2022	
			a bhail a bhaile a Marailte

SAMPLE DETAILS

Туре	:	Dry Pressed Ceramic Tiles water absorption (Ev \leq 0.5 %)
Group	:	Bla (Annexure-G)
Nominal Size (N)	:	1600 x 800 x 9.0 mm (Rectified)
Work Size	:	1600 x 800 mm
Nature of Surface	:	Glazed(GL)
Quantity of sample	:	40 Pieces
Batch No./Lot No.	:	27522
Date of Manufacturing	:	27-05-2022
Design	:	GL-ALINE CARRARA WHITE
Indication of First Quality	:	Provided (Premium)
Country of Origin	:	India
Any Other Information	:	Declared Thickness 9.0 mm
Total Weight of Box	:	Provided (54.0 kg Approx per box)
Specification	:	ISO: 13006 Third Edition 2018-09 (Ceramic tiles- Definitions, Classification, Characteristics and marking)
Reference Standards	:	ISO: 10545 (Part - 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) with Latest Edition.

Page 1 of 15

COMPLETE TESTING SOLUTION FOR

Test Report

Test Report No.: HL/MT/220602003

Issued To: BLUEGRESS PORSELANO LLP

A. Determination of Dimensions and Surface Quality

ULR No.: TC902222000000868F Issue Date: 20-06-2022

Reference Standard : ISO: 10545 (Part - 2) - 2018

(a) Dimensions (i) Measurements of Average Size Lengthwise (Measurement of Length)													
a) Description of tiles : Pressed Ceramic Tiles													
b) Number of Specimen:	10 Who	le Tiles											
c) Nominal Size:	1600	х	800	х	9.0	mm							
d) Work Size:	1600	х	800	х	9.0	mm							
e) Thickness:	9.0	mm											
f) Instruments Used:	Vernier	Caliper											
Average Size Lengthwise		Number of Specimens											
Parameters	1	2	3	4	5	6	7	8	9	10			
Individual Size (mm) side 1	1600 12	1600.24	1600.26	1600.08	1600.14	1600.32	1600.20	1600.22	1600 12	1600.04			
Lengthwise	1000.12	1000.24	1000.20	1000.00	1000.14	1000.52	1000.20	1000.22	1000.12	1000.04			
Individual Size (mm) side 2 Lengthwise	1600.14	1600.22	1600.28	1600.12	1600.24	1600.00	1600.14	1600.30	1600.20	1600.14			
Lengthwise													
Average Size of each Specimen(mm)	1600.13	1600.23	1600.27	1600.10	1600.19	1600.16	1600.17	1600.26	1600.16	1600.09			
Both Sides Lengthwise	2000.20	2000.20	2000.27	2000120	2000.20	1000110	2000127	2000.20	2000.20	2000.00			
Average Size of 10 specimens (mm)	1600	0.176	mm										
Lengthwise		.170	mm										
Deviation of the average size of each													
specimen from the work size (mm) Lengthwise	0.130	0.230	0.270	0.100	0.190	0.160	0.170	0.260	0.160	0.090			
Deviation of the average size for													
the average of 10 specimens (mm)	0.176	mm				Required	Value: ± 2	1.0 mm					
lengthwise						- 1		-					
Deviation of the average size of each													
specimen from the work size (%)	0.008	0.014	0.017	0.006	0.012	0.010	0.011	0.016	0.010	0.006			
Lengthwise % Deviation of the average size													
from the average of 10 Specimens	0.011	0/				Poquirod	Value: ± (ר כ ס/					
Lengthwise	0.011	/0				Required	value. ± (J.J /0					
Deviation of the average size of each													
specimen from the average of 10	-0.046	0.054	0.094	-0.076	0.014	-0.016	-0.006	0.084	-0.016	-0.086			
specimen (mm) Lengthwise													
Deviation of the average size of each			0.000	0.005	0.004	0.004		0.005	0.004	0.00-			
specimne from average of 10	-0.003	0.003	0.006	-0.005	0.001	-0.001	0.000	0.005	-0.001	-0.005			
specimens (%) Lengthwise	Remark:	Conforms											
	Remark.	comornia											

Page 2 of 15

COMPLETE TESTING SOLUTION FOR

Test Report

Test Report No.: HL/MT/220602003 Issued To: BLUEGRESS PORSELANO LLP

A. Determination of Dimensions and Surface Quality

ULR No.: TC902222000000868F Issue Date: 20-06-2022

Reference Standard : ISO: 10545 (Part - 2) - 2018

		• /••			<i></i> .							
(ii) Measurements of Average Size a) Description of tiles :	Pressed			ents of W	<u>/lath)</u>							
	10 Whol		THES									
b) Number of Specimen:			000		0.0							
c) Nominal Size:	1600	x	800	х	9.0	mm						
d) Work Size:	1600	х	800	х	9.0	mm						
e) Thickness:	9.0	mm										
f) Instruments Used:	Vernier	Caliper										
Average Size Widthwise		Number of Specimens										
Parameters	1	2	3	4	5	6	7	8	9	10		
Individual Size (mm) side 1	~~~~~											
Widthwise	800.02	800.08	799.98	800.00	800.10	800.10	800.00	800.04	800.08	800.12		
Individual Size (mm) side 2	800.12	800.04	799.98	800.04	800 OC	900 12	800.02	800.00	800.06	800.08		
Widthwise	800.12	800.04	799.98	800.04	800.06	800.12	800.02	800.00	800.06	800.08		
Average Size of each Specimen(mm)	800.070	800.060	799.980	800.020	800.080	800.110	800.010	800.020	800.070	800.100		
Both Sides Widthwise												
Average Size of 10 specimens (mm)												
Widthwise	800.052	mm										
Deviation of the average size of												
each specimen from the work size	0.070	0.060	-0.020	0.020	0.080	0.110	0.010	0.020	0.070	0.100		
(mm) Widthwise												
Deviation of the average size for												
the average of 10 specimens (mm) Widthwise	0.052	mm				Required	Value: ± 1	1.0 mm				
Deviation of the average size of												
each specimen from the work size	0.009	0.007	-0.002	0.002	0.010	0.014	0.001	0.002	0.009	0.013		
(%) Widthwise	0.009	0.007	-0.002	0.002	0.010	0.014	0.001	0.002	0.009	0.015		
% Deviation of the average size												
from the average of 10 Specimens	0.006	%				Required	Value: ± ().3 %				
Widthwise						•						
Deviation of the average size of each												
specimen from the average of 10	0.018	0.008	-0.072	-0.032	0.028	0.058	-0.042	-0.032	0.018	0.048		
specimen (mm) Widthwise												
Deviation of the average size of												
each specimne from average of 10	0.002	0.001	-0.009	-0.004	0.003	0.007	-0.005	-0.004	0.002	0.006		
specimens (%) Widthwise												

Remark: Conforms

Page 3 of 15

COMPLETE TESTING SOLUTION FOR

Test Report

Test Report No.: HL/MT/220602003 Issued To: BLUEGRESS PORSELANO LLP

ULR No.: TC902222000000868F Issue Date: 20-06-2022

Reference Standard : ISO: 10545 (Part - 2) - 2018

A. Determination of Dimensions and Surface Quality

(iii) Measurements of Thickness

a) Description of tiles :		Ceramic	Tiloc									
			Tiles									
b) Number of Specimen:	10 Who											
c) Nominal Size:	1600	х	800		9.0	mm						
d) Work Size:	1600	х	800	х	9.0	mm						
e) Thickness:	9.0	mm										
f) Instruments Used:	Microm	eter										
Thickness		Number of Specimens										
Parameters	1	2	3	4	5	6	7	8	9	10		
Thickness (mm) Position 1	9.29	8.75	9.25	9.05	9.09	9.17	9.13	9.19	8.70	8.72		
Thickness (mm) Position 2	8.86	9.21	8.83	9.27	8.73	8.95	8.79	9.10	9.24	9.03		
Thickness (mm) Position 3	9.12	9.06	9.23	8.85	9.00	8.96	9.18	9.20	8.76	9.04		
Thickness (mm) Position 4	8.93	8.91	9.15	9.16	9.08	9.30	8.98	9.22	9.07	8.92		
Average Tickness (mm)	9.050	8.983	9.115	9.083	8.975	9.095	9.020	9.178	8.943	8.928		
Average Thickness of 10 specimens (mm) all positions	9.037	' mm										
Deviation of the average thickness of each tile from the work size thickness(mm)	0.050	-0.017	0.115	0.082	-0.025	0.095	0.020	0.178	-0.058	-0.072		
Deviation of the average thickness from the average of 10 specimens (mm)	0.037	' mm				Required \	/alue: ± 0.	5 mm				
Deviation of the average thickness of each specimen from the work size (%)	0.556	-0.194	1.278	0.917	-0.278	1.056	0.222	1.972	-0.639	-0.806		
% Deviation of the average thickness from the average of 10 Specimens	0.408	8 %				Required \	/alue: ± 5.	0 %				
	Remark:	Conform	5									

Page 4 of 15

Test Report

Test Report No.: HL/MT/220602003

Issued To: BLUEGRESS PORSELANO LLP

(iv) Massuraments of Straightness of Sides

A. Determination of Dimensions and Surface Quality

ULR No.: TC902222000000868F Issue Date: 20-06-2022

Reference Standard : ISO: 10545 (Part - 2) - 2018

(iv) Measurements of Straightness	<u>s of Sides</u>											
Straightness of Sides				Nur	nber of S	pecimen	S					
(a) Lengthwise	1	2	3	4	5	6	7	8	9	10		
Straightness of sides (mm) side 1	0.41	0.32	-0.06	0.36	-0.02	-0.14	0.04	-0.18	0.23	0.15		
Straightness of sides (mm) side 2	0.29	-0.19	0.10	0.06	-0.07	0.14	0.01	-0.05				
Maximum deviation of Straightness	0.41 n	nm		R	equired V	alue: ± 0.8	8 mm					
of both sides (mm)	-0.19 mm											
Maximum deviation from	0.026 % Required Value: ± 0.3 %											
straightness related to the	-0.012 %											
corresponding work size (%)												
(b) Widthwise	1	2	3	4	5	6	7	8	9	10		
Straightness of sides (mm) side 1	0.17	0.08	0.37	-0.12	0.11	-0.21	0.07	0.28	0.02	0.03		
Straightness of sides (mm) side 2	0.35	0.01	0.21	-0.03	-0.11	0.34	0.42	-0.09	0.38	-0.14		
Maximum deviation of Straightness	0.42 mm Required Value: ± 0.8 mm											
of both sides (mm)	-0.21 mm											
Maximum deviation from	0.053 % Required Value: ± 0.3 %											
straightness related to the	-0.026 %											
corresponding work size (%)												
Remark: Conforms												
()												
(v) Measurements of Rectangular	ity											
Rectangularity of Sides						pecimen				_		
Rectangularity of Sides (a) Lengthwise	1	2	3	4	5	6	7	8	9	10		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1	1 0.15	-0.10	0.27	4 0.32	5 0.25	6 0.23	7 0.40	0.37	0.28	0.03		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1	1 0.15 0.17	-0.10 0.16		4 0.32 0.35	5 0.25 0.14	6 0.23 -0.01	7 0.40 0.02	-		-		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Maximum deviation of	1 0.15 0.17 0.40 n	-0.10 0.16 nm	0.27	4 0.32 0.35	5 0.25 0.14	6 0.23	7 0.40 0.02	0.37	0.28	0.03		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1	1 0.15 0.17 0.40 n - 0.10 n	-0.10 0.16 nm nm	0.27	4 0.32 0.35 R	5 0.25 0.14 equired V	6 0.23 -0.01 /alue: ± 1.5	7 0.40 0.02 5 mm	0.37	0.28	0.03		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from	1 0.15 0.17 0.40 n - 0.10 n	-0.10 0.16 nm nm	0.27	4 0.32 0.35 R	5 0.25 0.14 equired V	6 0.23 -0.01	7 0.40 0.02 5 mm	0.37	0.28	0.03		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Maximum deviation of Rectangularity of both sides (mm)	1 0.15 0.17 0.40 n - 0.10 n	-0.10 0.16 nm nm	0.27	4 0.32 0.35 R	5 0.25 0.14 equired V	6 0.23 -0.01 /alue: ± 1.5	7 0.40 0.02 5 mm	0.37	0.28	0.03		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from Rectangularity related to the	1 0.15 0.17 0.40 n - 0.10 n	-0.10 0.16 nm nm	0.27	4 0.32 0.35 R	5 0.25 0.14 equired V	6 0.23 -0.01 /alue: ± 1.5	7 0.40 0.02 5 mm	0.37	0.28	0.03		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from Rectangularity related to the	1 0.15 0.17 0.40 n - 0.10 n	-0.10 0.16 nm nm	0.27	4 0.32 0.35 R	5 0.25 0.14 equired V	6 0.23 -0.01 /alue: ± 1.5	7 0.40 0.02 5 mm	0.37	0.28	0.03		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from Rectangularity related to the corresponding work size (%)	1 0.15 0.17 0.40 m -0.10 m 0.025 % -0.006 %	-0.10 0.16 nm nm 6	0.27 0.30	4 0.32 0.35 R	5 0.25 0.14 equired V equired V	6 0.23 -0.01 Yalue: ± 1.1 Yalue: ± 0.1	7 0.40 0.02 5 mm 3 %	0.37	0.28 0.24	0.03 0.22		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from Rectangularity related to the corresponding work size (%) (b) Widthwise	1 0.15 0.17 0.40 n - 0.10 n 0.025 % - 0.006 %	-0.10 0.16 nm nm 6 6	0.27 0.30 3	4 0.32 0.35 R R	5 0.25 0.14 equired V equired V	6 0.23 -0.01 'alue: ± 1.' 'alue: ± 0.'	7 0.40 0.02 5 mm 3 %	0.37 0.33 8	0.28 0.24 9	0.03 0.22		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from Rectangularity related to the corresponding work size (%) (b) Widthwise Rectangularity (mm) side 1	1 0.15 0.17 0.40 n - 0.10 n 0.025 % - 0.006 % 1 0.18	-0.10 0.16 nm nm 6 6 6 2 0.36 -0.09	0.27 0.30 3 0.15	4 0.32 R R 4 0.33 0.06	5 0.25 0.14 equired V equired V 5 0.09 0.21	6 0.23 -0.01 /alue: ± 1. /alue: ± 0. 6 0.16	7 0.40 0.02 5 mm 3 % 7 0.17 -0.04	0.37 0.33 8 -0.08	0.28 0.24 9 0.38	0.03 0.22 10 0.31		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from Rectangularity related to the corresponding work size (%) (b) Widthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Rectangularity (mm) side 2 Maximum deviation of Rectangularity of both sides (mm)	1 0.15 0.17 0.40 m - 0.10 m 0.025 % - 0.006 % 1 0.18 0.00	-0.10 0.16 nm nm 6 6 6 7 0.36 -0.09 nm	0.27 0.30 3 0.15	4 0.32 R R 4 0.33 0.06	5 0.25 0.14 equired V equired V 5 0.09 0.21	6 0.23 -0.01 'alue: ± 1. 'alue: ± 0. 'alue: ± 0. 6 0.16 0.32	7 0.40 0.02 5 mm 3 % 7 0.17 -0.04	0.37 0.33 8 -0.08	0.28 0.24 9 0.38	0.03 0.22 10 0.31		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from Rectangularity related to the corresponding work size (%) (b) Widthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Rectangularity (mm) side 2 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from	1 0.15 0.17 0.40 m -0.10 m 0.025 % -0.006 % 1 0.18 0.00 0.38 m	-0.10 0.16 nm nm 6 6 6 2 0.36 -0.09 nm nm	0.27 0.30 3 0.15	4 0.32 0.35 R R 4 0.33 0.06 R	5 0.25 0.14 equired V equired V 5 0.09 0.21 equired V	6 0.23 -0.01 'alue: ± 1. 'alue: ± 0. 'alue: ± 0. 6 0.16 0.32	7 0.40 0.02 5 mm 3 % 7 0.17 -0.04 5 mm	0.37 0.33 8 -0.08	0.28 0.24 9 0.38	0.03 0.22 10 0.31		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from Rectangularity related to the corresponding work size (%) (b) Widthwise Rectangularity (mm) side 1 Rectangularity (mm) side 2 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from Rectangularity related to the	1 0.15 0.17 0.40 m - 0.10 m 0.025 % - 0.006 % 1 0.18 0.00 0.38 m - 0.11 m	-0.10 0.16 nm nm 6 6 6 2 0.36 -0.09 nm nm 6	0.27 0.30 3 0.15	4 0.32 0.35 R R 4 0.33 0.06 R	5 0.25 0.14 equired V equired V 5 0.09 0.21 equired V	6 0.23 -0.01 /alue: ± 1. /alue: ± 0. 6 0.16 0.32 /alue: ± 1.	7 0.40 0.02 5 mm 3 % 7 0.17 -0.04 5 mm	0.37 0.33 8 -0.08	0.28 0.24 9 0.38	0.03 0.22 10 0.31		
Rectangularity of Sides (a) Lengthwise Rectangularity (mm) side 1 Rectangularity (mm) side 1 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from Rectangularity related to the corresponding work size (%) (b) Widthwise Rectangularity (mm) side 1 Rectangularity (mm) side 2 Maximum deviation of Rectangularity of both sides (mm) Maximum deviation from Rectangularity related to the corresponding work size (%)	1 0.15 0.17 0.40 m - 0.10 m 0.025 % - 0.006 % 1 0.18 0.00 0.38 m - 0.11 m	-0.10 0.16 nm nm 6 6 6 2 0.36 -0.09 nm nm 6 6	0.27 0.30 3 0.15	4 0.32 0.35 R R 4 0.33 0.06 R	5 0.25 0.14 equired V equired V 5 0.09 0.21 equired V	6 0.23 -0.01 /alue: ± 1. /alue: ± 0. 6 0.16 0.32 /alue: ± 1.	7 0.40 0.02 5 mm 3 % 7 0.17 -0.04 5 mm	0.37 0.33 8 -0.08	0.28 0.24 9 0.38	0.03 0.22 10 0.31		

Page 5 of 15

COMPLETE TESTING SOLUTION FOR

A. Centre Curvature:

Plot No. 8, Shayona Estate Part-2, Bh. Silver Oak Engineering College, Nr. AUDA Water Tank, Gota, Ahmedabad-382481 Gujarat, INDIA. Email : hexiqonlab@gmail.com Mb.: +91 8487878021, +91 9825577370 Tel.: 079-29600229

Test Report

Test Report No.: HL/MT/220602003

Issued To: BLUEGRESS PORSELANO LLP

ULR No.: TC902222000000868F Issue Date: 20-06-2022

A. Determination of Dimensions and Surface Quality

Issue Date: 20-06-2022

Reference Standard : ISO: 10545 (Part - 2) - 2018

	Number of Specimens												
Centre Curvature	1	2	3	4	5	6	7	8	9	10			
Centre curvature (mm) Diagonal 1	0.20	0.41	0.06	0.07	-0.23	-0.24	0.21	0.37	-0.02	-0.04			
Centre curvature (mm) Diagonal 2	0.16	0.44	0.33	0.24	0.31	0.40	0.42	0.11	0.34	0.32			
Maximum centre curvature related to the diagonal work size (mm)	0.44 n -0.24 n			Required Value: ± 1.8 mm									
Maximum centre curvature related to the diagonal calculated from work size (%)	0.025 % -0.013 %												
I	emark: Conforms												
B. Edge Curvature of Length													
(a) Lengthwise	1	2	3	4	5	6	7	8	9	10			
Edge curvature(mm) side 1	-0.20	-0.11	0.39	0.11	0.12	-0.16	-0.07	0.10	0.45	-0.13			
Edge curvature(mm) side 2	0.42	-0.04	-0.24	-0.03	0.14	0.18	0.15	0.25	0.20	0.28			
Maximum edge curvature related to the corresponding work size (mm)	0.45 n -0.24 n	I5 mmRequired Value: ± 1.8 mm24 mm											
Maximum edge curvature related to the corresponding work size (%)	0.028 % -0.015 %			R	equired \	/alue: ± 0.	4 %						
C. Edge Curvature of Width													
(b) Widthwise	1	2	3	4	5	6	7	8	9	10			
Edge curvature(mm) side 1	0.33	0.35	0.26	0.22	0.03	0.08	0.15	0.10	-0.08	0.13			
Edge curvature(mm) side 2	0.23	0.31	-0.12	0.38	0.21	0.40	0.01	0.11	0.46	-0.02			
Maximum edge curvature related	0.46 n	nm		R	equired V	/alue: ± 1.	8 mm						
to the corresponding work size (mm)	-0.12 n	nm											
(IIIII) Maximum edge curvature related	0.058 %	6		R	equired \	/alue: ± 0.4	4 %						
to the corresponding work size	-0.015 %				equica i								
(%)													
I	Remark: Co	onforms											

Page 6 of 15

COMPLETE TESTING SOLUTION FOR

Test Report

Test Report No.: HL/MT/220602003

Issued To: BLUEGRESS PORSELANO LLP

ULR No.: TC90222200000868F Issue Date: 20-06-2022

A. Determination of Dimensions and Surface Quality

Reference Standard : ISO: 10545 (Part - 2) - 2018

(vi) Measurements of Surface Flatness (Curvature and Warpage)

D. Warpage											
(a) Lengthwise	1	2	3	4	5	6	7	8	9	10	
Warpage (mm) side 1	-0.03	0.01	-0.02	-0.05	0.14	0.08	0.30	0.07	-0.01	0.23	
Warpage (mm) side 2	-0.07	0.22	0.21	-0.09	0.00	-0.04	0.18	0.28	0.13	0.33	
Maximum warpage related to the diagonal from work size (mm)		0.33 mm Required Value: ± 1.8 mm -0.09 mm Control of the second									
Maximum warpage related to the diagonal from work size (%)		0.018 % Required Value: ± 0.4 %									
E. Warpage											
(b) Widthwise	1	2	3	4	5	6	7	8	9	10	
Warpage (mm) side 1	0.21	0.09	0.44	-0.04	0.19	0.31	0.23	0.15	0.29	-0.02	
Warpage (mm) side 2	-0.01	0.12	0.27	0.28	0.22	-0.10	0.30	0.04	0.35	-0.18	
Maximum warpage related to the diagonal from work size (mm)	0.44 n -0.18 n			R	Required Value: ± 1.8 mm						
Maximum warpage related to the diagonal from work size (%)	0.025 % Required Value: ± 0.4 % -0.010 % Contract of the second										
Я	Remark: Conforms										

Page 7 of 15

Test Report

Test Report No.: HL/MT/220602003

Issued To: BLUEGRESS PORSELANO LLP

ULR No.: TC902222000000868F

Issue Date: 20-06-2022

Reference Standard : ISO: 10545 (Part - 2) - 2018

A. Determination of Dimensions and Surface Quality
(vii) Measurements of Surface Quality

a) Description of tiles :	Pressed	Pressed Ceramic Tiles									
b) Number of Specimen:	20 Who	20 Whole Tiles									
c) Nominal Size:	1600	х	800	x	9.0	mm					
d) Work Size:	1600	х	800	х	9.0	mm					
e) Thickness:	9.0	mm									
f) Instruments Used:	Fluores	cent Li	ghting c	of Colou	r, Temp	., Meter Rule, Light					

Number of Specimen	Cracks	Crazing	Dry Spot	Uneve nness		Glaze Devitrifi cation	Specks and Spots	Under glaze fault	Decorating fault	Chip	Blister	Rough Edge	Polishing defect
1	С	С	С	С	С	С	С	С	С	С	С	С	С
2	С	С	С	С	С	С	С	С	С	С	С	С	С
3	С	С	С	С	С	С	С	С	С	С	С	С	С
4	С	С	С	С	С	С	С	С	С	С	С	С	С
5	С	С	С	С	С	С	С	С	С	С	С	С	С
6	С	С	С	С	С	С	С	С	С	С	С	С	С
7	С	С	С	С	С	С	С	С	С	С	С	С	С
8	С	С	С	С	С	С	С	С	С	С	С	С	С
9	С	С	С	С	С	С	С	С	С	С	С	С	С
10	С	С	С	С	С	С	С	С	С	С	С	С	С
11	С	С	С	С	С	С	С	С	С	С	С	С	С
12	С	С	С	С	С	С	С	С	С	С	С	С	С
13	С	С	С	С	С	С	С	С	С	С	С	С	С
14	С	С	С	С	С	С	С	С	С	С	С	С	С
15	С	С	С	С	С	С	С	С	С	С	С	С	С
16	С	С	С	С	С	С	С	С	С	С	С	С	С
17	С	С	С	С	С	С	С	С	С	С	С	С	С
18	С	С	С	С	С	С	С	С	С	С	С	С	С
19	С	С	С	С	С	С	С	С	С	С	С	С	С
20	С	С	С	С	С	С	С	С	С	С	С	С	С

Remark: - C = Conform the Requirement

Procedure: Tile have been Placed in the observation table under 275± 25 lux light by 6000 K lighting source and observed for the surface defects and Intentional effects-

Observation: No cracks, crazing, dry spots, unevenness, pin hole, glaze devitrification, specks or spots, underglaze fault, polishing defects, polishing effects, decorating fault, chip, blister, rough edge, welt, etc. have been Observed. Also In order to judge whether there is a defect or an intentional decorative effect, the intentionality and aesthetics of the effect have been assessed, including a review of the manufacturer documentation. Cracks, chipped edges and chipped corners have not been detected. 100 % Tile is free from Visual Defects.

Required Value: Tiles should not have Above mentioned Defects in 95 % Tiles Observed **Remark: Conforms**

Page 8 of 15

Test Report

Test Report No.: HL/MT/220602003

Issued To: BLUEGRESS PORSELANO LLP

B. Physical Property

(ii) Modulus of Rupture

(i) Water Absorption Reference Standard : ISO: 10545 (Part - 3) - 2018

Sample Size: 200x200 x 9.0 mm

Specimen Number	Mass of the Dry Sample (gm) (M1)	Mass of the Wet Sample (gm) (M2)	Water absorption of Individual Specimen (%) (M2-M1) x 100/M1
1	810.15	810.47	0.0395
2	807.45	807.76	0.0384
3	795.44	795.75	0.0390
4	796.42	796.73	0.0389
5	795.69	796.05	0.0452
6	806.35	806.70	0.0434
7	796.95	797.26	0.0389
8	804.32	804.68	0.0448
9	806.53	806.85	0.0397
10	792.00	792.32	0.0404
11	799.22	799.49	0.0338
12	795.30	795.61	0.0390
Average Water Absorption of the all specimens tested in % Individual Max. Value of Water Absorption of the Specimen in % Remark: Conforms		% Requir	red Value Max. 0.5 %
		% Requir	ed Value Max. 0.6 %

Reference Standard : ISO: 10545 (Part - 4) - 2019

Specimen Number	Breaking Load (Newton) F	Span between the support rods (mm) I ₂	Width of the test Specimen (mm) b	Minimum thickness of the test specimen measured after the along the broken edge (mm) h	Modulus of Rupture of Individual Specimen (N/mm ²) 3Fl ₂ /2bh ²
1	915.5	780	400	8.71	35.30
2	966.0	780	400	8.71	37.24
3	972.5	780	400	8.71	37.50
4	986.5	780	400	8.71	38.04
5	988.5	780	400	8.71	38.11
6	961.0	780	400	8.71	37.05
7	967.5	780	400	8.71	37.30

Average Breaking Load, N	965.36 Newton						
Average Modulus of Rupture, N/mm ²	37.22 N/mm2	Required Value: 35 N/mm ²					
Individual Minimum Modulus of Rupture, N/mm ²	35.30 N/mm2	Required Value: 32 N/mm ²					
* Note: Testing has been performed on cut tiles, specimen size(800x400)							
Remark: Conforms	Page 9 of 15						

COMPLETE TESTING SOLUTION FOR

ULR No.: TC902222000000868F Issue Date: 20-06-2022

Test Report

Test Report No.: HL/MT/220602003

Issued To: BLUEGRESS PORSELANO LLP

(iii) Breaking Strength

ULR No.: TC90222200000868F

Issue Date: 20-06-2022

Reference Standard : ISO: 10545 (Part - 4) - 2019

Specimen Number	Breaking Load (Newton) F	Span between the support rods (mm) l ₂	Width of the test Specimen (mm) b	Breaking Strength of Individual Specimen (N) Fl ₂ /b
1	915.5	780	400	1785.23
2	966.0	780	400	1883.70
3	972.5	780	400	1896.38
4	986.5	780	400	1923.68
5	988.5	780	400	1927.58
6	961.0	780	400	1873.95
7	967.5	780	400	1886.63
Average Breaking Load, N		965.36	Newton	
Average Breaking Strength, N		1882.45	Newton	Required Value: Min 1300 Newton

* Note: Testing has been performed on cut tiles, specimen size(800x400)

Required Value: Min 1300 Newton Remark: Conforms

(iv) Determination of Impact Resistance by measurement of coefficient of restitution

Reference Standard : ISO: 10545 (Part - 5) - 1996

Specimen Number	Dropping height of the ball (h1) mm	Indentation or Cracking	Coefficient of restitution of Specimen
1	1000	No Indentation or Cracking	0.801
2	1000	No Indentation or Cracking	0.798
3	1000	No Indentation or Cracking	0.805
4	1000	No Indentation or Cracking	0.802
5	1000	No Indentation or Cracking	0.800
Average Coefficient of Restitut specimens tested	ion of the all	0.801	Required Value : Min 0.55 Conforms

specimens tested Any indentation or Cracking in the Test Specimen

No Indentation or Cracking Observed in all the test specimen tested

(v) Determination of Resistance to surface abrasion for glazed tiles

Reference Standard : ISO: 10545 (Part - 7) - 1996

Specimen Number	Abrasion stage at Revolutions	Failure Occur	Class of stain resistance for tiles of Abrasion	Average Class of stain resistance for tiles of Abrasion
1	100	No	NA	
2	150	No	NA	
3	600	No	NA	
4	750	No	NA	Λ
5	1500	No	NA	4
6	2100	No	NA	
7	6000	Yes	4	
8	12000	NA	NA	
Resistance to surface abrasion of	glazed tiles	Deserved 2400 D	Doguiro	

intended for use on floors Class 4, Pass

Class 4, Passed 2100 Revolutions

Required Vale: NA

Page 10 of 15

5

Plot No. 8, Shayona Estate Part-2, Bh. Silver Oak Engineering College, Nr. AUDA Water Tank, Gota, Ahmedabad-382481 Gujarat, INDIA. Email : hexiqonlab@gmail.com Mb.: +91 8487878021, +91 9825577370 Tel.: 079-29600229

Test Report

Test Report No.: HL/MT/220602003 Issued To: BLUEGRESS PORSELANO LLP

ULR No.: TC90222200000868F Issue Date: 20-06-2022

(vi) Determination of Linear Thermal Expansion

Reference Standard : ISO: 10545 (Part - 8) - 2014 Coefficient of Linear Thermal Expansion Length of Test

Test Parameters	Specime Ambie Temper	en at ent		oient erature	-	Increase C in mm	Rea	uired	Res	ults
a. Coefficient of linear thermal expansion, ambient to 100 ⁰ C, Specimen 2	25.2	29	28	3.0	0.	006	Ν	IA	3.30 x	10 ⁻⁶
b. Coefficient of linear thermal expansion, ambient to 100 ⁰ C, Specimen 2	25.2	23	28	3.9	0.	005	Ν	IA	2.79 _x	10 ⁻⁶
Average Coefficient of linear thermal expansion, ambient to 100°C Remark: Conforms (vii) Determination of Resistance to Thermal Shock Reference Standard : ISO: 10545 (Part - 9) - 2013 i) Water Absorption Coefficient:										
			examine						ne after th	
Specimen Number	(Naked (Crazing Naked eye)	Dryspot (Naked eye)	Blue S	lethylene staining ed eye)	Cracks (Naked eye)	Crazing (Naked eye)	Dryspot (Naked eye)	Using Meth Staining (N	-
1	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.
2	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.
3	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.
4	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.

Remarks and Observation: No visual defects like Crack, Crazing, Dry Spots in all the five test specimen. **Remark: Conforms**

Satisfac. Satisfac.

Page 11 of 15

Satisfac. Satisfac. Satisfac.

No Def.

No Def.

No Def.

No Def.

No Def.

Test Report

Test Report No.: HL/MT/220602003

Issued To: BLUEGRESS PORSELANO LLP

(viii) Determination of Moisture Expansion

Reference Standard : ISO: 10545 (Part - 10) - 2021

Plot No. 8, Shayona Estate Part-2, Bh. Silver Oak Engineering College, Nr. AUDA Water Tank, Gota, Ahmedabad-382481 Gujarat, INDIA. Email : hexiqonlab@gmail.com Mb.: +91 8487878021, +91 9825577370 Tel.: 079-29600229

ULR No.: TC90222200000868F

Issue Date: 20-06-2022

	Length of Specin	nen after re-firing	Length of Specime		
	(m	ım)	boiling w	Moisture Expansion of	
Specimen Number	Initial Length	Length after 3 h	Length After 1 h	Length after 3 h	each test Specimen
		from the initial	removal from the	from the first	(mm/m)
	(mm)	measurement	boiling	measurement	
1	100.175	100.175	100.177	100.176	0.00998
2	100.246	100.246	100.248	100.247	0.00998
3	100.183	100.183	100.186	100.184	0.00998
4	100.309	100.309	100.310	100.310	0.00997
5	100.218	100.218	100.220	100.219	0.00998
		Averag	e Moisture Expans	sion (mm/m)	0.00998
Maximum Value of Moisture Remark: Conforms	e Expansion (mr	n/m)	0.00998	Required Value	Max. 0.6 mm/m

(ix) Determination of Crazing Resistance for glazed tiles

Reference Standard : ISO: 10545 (Part - 11) - 1994

Specimen Number	Examine the test Specimen for Crazing	Test Condition for the Specimen		
1	No Crazing			
2	No Crazing	Kant in Autoclaus at Drassurs 500120		
3	No Crazing	Kept in Autoclave at Pressure 500±20		
4	No Crazing	kPa, Steam Temperature 159±1°C		
5	No Crazing			
nark: No tost sposimon sk	nows any sign of Crazing ofter performing the test			

Remark: No test specimen shows any sign of Crazing after performing the test. **Remark: Conforms**

(x) Determination of Frost Resistance

Reference Standard : ISO: 10545 (Part - 12) - 1995

	Visua	defect	examine	before t	he test	Vi	sual def	ect examir	ne after th	ne test
Specimen Number	Cracks	Crazing	Dryspot	•	hylene Blue ining	Cracks	Crazing	Dryspot	0	thylene Blue aining
1	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.
2	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.
3	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.
4	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.
5	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.
6	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.
7	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.
8	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.
9	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.
10	Satisfac.	Satisfac.	Satisfac.	Satisfac.	Satisfac.	No Def.	No Def.	No Def.	No Def.	No Def.

Remark: All the test specimen having no visual defect after 100 cycles freeze thaw test **Remark: Conforms**

Page 12 of 15

Test Report								
Test Report No.: HL/MT/220602003 ULR No.: TC90222200000868F								
Issued To: BLUEGRESS POR	SELANO LLP		Issue Date: 20-06-2022					
(xi) Small Colour Difference								
Reference Standard : ISO:								
Observation No.	1 2		4	5				
Observation Value ∆E	0.2 0.	_	-	0.3				
Average Value of colour D	Difference ΔE 0.30		Req. Value < 0.75					
Remark: Conforms								
C. Chemical Property								
(i) Determination of Chemi								
Reference Standard : ISO: a. House hold chemical F								
		Poquiromonto	Test Results	Remark				
Specimen Number 1	Characteristic/ Test	Requirements Min. class B(V)	Class-A(V) No visual change	Remark				
2	Ammonium Chloride	Min. class B(V)	Class-A(V) No visual change	Conforms				
3	solution 100 gm/L	Min. class B(V)	Class-A(V) No visual change	comornis				
b. Swimming Pool Salt:								
Specimen Number	Characteristic/ Test	Requirements	Test Results	Remark				
1	characteristicy rest	Min. class B(V)	Class-A(V) No visual change	Remark				
2	Sodium Hypochlorite	Min. class B(V)	Class-A(V) No visual change	Conforms				
3	Solution 20mg/l	Min. class B(V)	Class-A(V) No visual change	comornis				
c. Low Concentration (L)	•							
Specimen Number	Characteristic/ Test	Requirements	Test Results	Remark				
1	characteristicy rest	Min Class LB(V)	Class-LA(V) No visual change	Nemark				
2	i) Hydrochloric Acid	Min Class LB(V)	Class-LA(V) No visual change	Conforms				
3	solution 3% (v/v)	Min Class LB(V)	Class-LA(V) No visual change	comornio				
1		Min Class I B(V)	Class- LA(V) No visual change					
2	ii) Citric acid Solution 100	Min Class LB(V)	Class- LA(V) No visual change	Conforms				
3	gm/l	Min Class LB(V)	Class- LA(V) No visual change					
1		Min Class LB(V)	Class- LA(V) No visual change					
2	iii) Potassium Hydroxide	Min Class LB(V)	Class- LA(V) No visual change	Conforms				
3	Solution 30gm/l	Min Class LB(V)	Class- LA(V) No visual change	comornis				
	۱۱.							
d. High Concentration (H	Characteristic/ Test	Doguiromonto	Test Results	Demeril				
Specimen Number	Characteristic/ Test	Requirements Min Class HB(V)	Class-HA(V) No visual change	Remark				
1 2	i) Hydrochloric Acid	Min Class HB(V)	Class-HA(V) No visual change	Conforms				
2 3	Solution 18% (v/v)	Min Class HB(V)	Class-HA(V) No visual change	comornis				
5								
1	ii) Lactic Acid Solution 5%	Min Class HB(V)	Class- HA(V) No visual change					
2	(v/v)	Min Class HB(V)	Class- HA(V) No visual change	Conforms				
3	(-/-/	Min Class HB(V)	Class- HA(V) No visual change					
	D	ago 12 of 15	145					

Page 13 of 15

Test Report

Test Report No.: HL/MT/220602003 Issued To: BLUEGRESS PORSELANO LLP

ULR No.: TC902222000000868F

Issue Date: 20-06-2022

Specimen Number	Characteristic/ Test	Requirements	Test Results	Remark
1	iii) Potassium Hydroxide	Min Class HB(V)	Class- HA(V) No visual change	
2		Min Class HB(V)	Class- HA(V) No visual change	Conforms
3	Solution 100gm/l	Min Class HB(V)	Class- HA(V) No visual change	

(ii) Determination of Resistance to stains Reference Standard : ISO: 10545 (Part - 14) - 2015

a. Stain Leaving Trace:

Specimen Number	Characteristic/ Test	Requirements	Test Results	Remark
1	Green Staining Agent in	Min Class 3	Class 5	
2	light oil (Cr2O3 in light	Min Class 3	Class 5	Conforma
3	oil), for all tiles except green colored tiles	Min Class 3	Class 5	Conforms

b. Stain having chemical/oxidizing action:

Specimen Number	Characteristic/ Test	Requirements	Test Results	Remark
1	Ledine 12 cm / colution	Min Class 3	Class 5	
2	Iodine, 13gm/l solution in alcohol	Min Class 3	Class 5	Conforms
3		Min Class 3	Class 5	

c. Stain Forming a film:

Specimen Number	Characteristic/ Test	Requirements	Test Results	Remark
1		Min Class 3	Class 5	
2	Olive oil	Min Class 3	Class 5	Conforms
3		Min Class 3	Class 5	

Page 14 of 15

COMPLETE TESTING SOLUTION FOR

Test	Report	
1000	roport	

Test Report No.: HL/MT/220602003/E

Issued To: BLUEGRESS PORSELANO LLP

Issue Date: 20-06-2022

C. Chemical Property

(iii) Determination of Lead and Cadmium given off by tiles Reference Standard :ISO: 10545 (Part - 15) - 2021				
Lead Release (mg/l & mg/d	m²)			
Specimen Number	Characteristic/ Test Parameter	Requirements	Test Results	Remark
1	Mass of lead Extracted per unitof	0.8 mg/dm ²	Not Detected (Detection	
	Surface þʌ(Pb), mg/dm²	0.	Limit 0.005)	
2	Mass of lead Extracted per unitof	0.8 mg/dm ²	Not Detected (Detection	Conforms
2	Surface ῥA(Pb), mg/dm²	0.0 mg/ am	Limit 0.005)	
3	Mass of lead Extracted per unitof	0.8 mg/dm ²	Not Detected (Detection	
5	Surface þA(Pb), mg/dm²	0.8 mg/um	Limit 0.005)	
Cadmium Release (mg/l & mg/dm²)				
Specimen Number	Characteristic/ Test Parameter	Requirements	Test Results	Remark
4	Mass of cadmium extracted per	0.07	Not Detected (Detection	
1	unitof Surface þ̀A(Cd), mg/dm²	0.07 mg/dm ²	Limit 0.005)	
2	Mass of cadmium extracted per		Not Detected (Detection	
	unitof Surface https://www.initofsurface	0.07 mg/dm ²	Limit 0.005)	Conforms
			,	
3	Mass of cadmium extracted per	0.07 mg/dm ²	Not Detected (Detection	
	unitof Surface p̀A(Cd), mg/dm²		Limit 0.005)	

Conformity Statement: The Sample provided by the Party for testing as per ISO 13006: 2018, Conforms the Requirements of the Specifications mentioned and other test methods used.

Opinion and Interpretation: Not Applicable

Reviewed By

Karan Singh

For, Hexiqon Laboratory

tavitra Singh

Note:

1. This report, in full or in part, shall not be published, advertised, used for any legal action, unless prior permission has been secured from the CEO of Laboratory.

2. This test report is ONLY FOR THE SAMPLE TESTED.

.....End of Report.....

Page 15 of 15

⁽Authorised Signatory)